Discussion : Latent Variable Graphical Model Selection via Convex Optimization

نویسنده

  • Harrison H. Zhou
چکیده

1. Introduction. We would like to congratulate the authors for their refreshing contribution to this high-dimensional latent variables graphical model selection problem. The problem of covariance and concentration matrices is fundamentally important in several classical statistical methodolo-gies and many applications. Recently, sparse concentration matrices estimation had received considerable attention, partly due to its connection to sparse structure learning for Gaussian graphical models. See, for example, Meinshausen and Bühlmann (2006) and Ravikumar et al. (2008). Cai, Liu & Zhou (2012) considered rate-optimal estimation. The authors extended the current scope to include latent variables. They assume that the fully observed Gaussian graphical model has a naturally sparse dependence graph. However, there are only partial observations available for which the graph is usually no longer sparse. Let X be (p + r) −variate Gaussian with a sparse concentration matrix S * (O,H). We only observe X O , p out of the whole p + r variables, and denote its covariance matrix by Σ * O. In this case, usually the p × p concentration matrix (Σ * O) −1 are not sparse. Let

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discussion of “Latent Variable Graphical Model Selection via Convex Optimization”

We wish to congratulate the authors for their innovative contribution, which is bound to inspire much further research. We find latent variable model selection to be a fantastic application of matrix decomposition methods, namely, the superposition of low-rank and sparse elements. Clearly, the methodology introduced in this paper is of potential interest across many disciplines. In the followin...

متن کامل

Discussion: Latent Variable Graphical Model Selection via Convex Optimization by Steffen Lauritzen

We want to congratulate the authors for a thought-provoking and very interesting paper. Sparse modeling of the concentration matrix has enjoyed popularity in recent years. It has been framed as a computationally convenient convex 1constrained estimation problem in Yuan and Lin (2007) and can be applied readily to higher-dimensional problems. The authors argue—we think correctly—that the sparsit...

متن کامل

Discussion: Latent variable graphical model selection via convex optimization

We want to congratulate the authors for a thought-provoking and very interesting paper. Sparse modeling of the concentration matrix has enjoyed popularity in recent years. It has been framed as a computationally convenient convex l1-constrained estimation problem in Yuan and Lin (2007) and can be applied readily to higher-dimensional problems. The authors argue— we think correctly—that the spar...

متن کامل

Discussion: Latent variable graphical model selection via convex optimization

We wish to congratulate the authors for their innovative contribution, which is bound to inspire much further research. We find latent variable model selection to be a fantastic application of matrix decomposition methods , namely, the superposition of low-rank and sparse elements. Clearly, the methodology introduced in this paper is of potential interest across many disciplines. In the followi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012